A Settler is a primary treatment technology for blackwater and greywater. It is designed to remove suspended solids by sedimentation. It may also be referred to as a sedimentation or settling basin/tank, or clarifier. The low flow velocity in a Settler allows settleable particles to sink to the bottom, while constituents lighter than water float to the surface.Mixture of urine, faeces and flushwater along with anal cleansing water (if water is used for cleansing) and/or dry cleansing materials. Blackwater contains the pathogens, nutrients and organic matter of faeces and the nutrients of urine that are diluted in the flushwater.Refers to (semi-solid) excrement that is not mixed with urine or water. Depending on diet, each person produces approximately 50–150 L per year of faecal matter of which about 80 % is water and the remaining solid fraction is mostly composed of organic material. Of the total essential plant nutrients excreted by the human body, faeces contain around 39 % of the phosphorus (P), 26 % of the potassium (K) and 12 % of the nitrogen (N). Faeces also contain the vast majority of the pathogens excreted by the body, as well as energy and carbon rich, fibrous material.Total volume of water generated from washing food, clothes and dishware, as well as from bathing, but not from toilets (see blackwater). It may also contain traces of excreta (e.g. from washing diapers) and, therefore, some pathogens. Greywater accounts for approximately 65 % of the wastewater produced in households with flush toilets.The liquid produced by the body to rid itself of nitrogen in the form of urea and other waste products. In this context, the urine product refers to pure urine that is not mixed with faeces or water. Depending on diet, human urine collected from one person during one year (approx. 300 to 550 L) contains 2 to 4 kg of nitrogen. The urine of healthy individuals is sterile when it leaves the body but is often immediately contaminated by coming into contact with faeces.Any substance that is used for growth. Nitrogen (N), phosphorus (P) and potassium (K) are the main nutrients contained in agricultural fertilisers. N and P are also primarily responsible for the eutrophication of water bodies.
An organism or other agent that causes disease.The first major stage in wastewater treatment that removes solids and organic matter mostly by the process of sedimentation or flotation.
Gravity settling of particles in a liquid such that they accumulate. User interface used for urination and defecation. The organic molecule (NH2)2CO that is excreted in urine and that contains the nutrient nitrogen. Over time, urea breaks down into carbon dioxide and ammonium, which is readily used by organisms in soil. It can also be used for on-site faecal sludge treatment. See. S.18Used water from any combination of domestic, industrial, commercial or agricultural activities, surface runoff/stormwater, and any sewer inflow/infiltration.
Settlers are often used as primary clarifiers, and are typically sequenced after Pre-Treatment Technologies PRE . Settlers can achieve a significant initial reduction in suspended solids (50–70 % removal) and organic material (20–40 % Biochemical Oxygen Demand (BOD) removal) and ensure that these constituents do not impair subsequent treatment processes. Settlers may take a variety of forms, sometimes fulfilling additional functions. They can be independent tanks or integrated into combined treatment units. Several other technologies in this Compendium have a primary sedimentation function or include a Compartment for primary settling: ABR T.2 , Biogas Reactor T.4 , Waste Stabilisation Ponds T.5 , Sedimentation and Thickening Ponds T.8 .
Describes biological processes that occur in the presence of oxygen.The main purpose of a Settler is to ensure sedimentation by reducing the velocity and turbulence of the wastewater stream. Settlers are typically designed for a hydraulic retention time of 1.5–2.5 hours. Less time is needed if the BOD level should not be too low for the following biological step. The tank should be designed to ensure satisfactory performance at peak flow. In order to prevent eddy currents and short-circuiting, as well as to retain scum inside the basin, a good inlet and outlet construction with an efficient distribution and collection system (baffles, weirs or T-shaped pipes) is important. Depending on design and location, desludging can be done using Manual Emptying and Transport C.1 , Motorised Emptying and Transport C.2 or by gravity using a bottom outlet. Clarifiers are settling tanks built with mechanical means for continuous removal of solids being deposited by sedimentation and are equipped with mechanical collectors that continually scrape the settled solids towards a sludge hopper in the base of the tank, from where it is pumped to sludge treatment facilities. A sufficiently sloped tank bottom facilitates sludge removal. Efficiency of the primary Settler depends on wastewater characteristics, retention time and sludge withdrawal rate. It may be reduced by wind-induced circulation, thermal convection and density currents due to temperature differentials and in hot climates, thermal stratification. These phenomena can lead to short-circuiting. To enhance the performance of Settlers inclined plates (lamellae) and tubes can be installed which increase the settling area, or chemical coagulants can be used.
Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:A Settler can be made of concrete, sand, gravel,cement, steel, as well as fibreglass, PVC or plastic, and are available as prefabricated units.
The choice of a technology to settle solids is governed by the wastewater characteristics, management capacities and desirability of an anaerobic process, with or without biogas production. Technologies that already include some type of primary sedimentation (listed above) do not need a separate Settler. Many treatment technologies, however, require preliminary removal of solids in order to function properly. A primary sedimentation tank is particularly important for technologies that use a filter material (e.g. Anaerobic Filter T.3 ) but is often omitted in small Activated Sludge plants T.13 . Settlers can also be installed as stormwater retention tanks to remove a portion of the organic solids that otherwise would be directly discharged into the environment.
Describes biological processes that occur in the presence of oxygen.In Settlers that are not designed for anaerobic processes, regular sludge removal is necessary to prevent septic conditions and the buildup and release of gas which can hamper the sedimentation process by re-suspending part of the settled solids. Sludge transported to the surface by gas bubbles is difficult to remove and may pass to the next treatment stage. Frequent scum removal is important and sludge should be disposed of appropriately in a treatment system or buried.
Describes biological processes that occur in the presence of oxygen.To prevent the release of odorous gases, frequent sludge removal is necessary. Sludge and scum must be handled with care as they contain high levels of pathogenic organisms; they require further treatment and adequate disposal. Appropriate personal protective equipment is necessary for workers who may come in contact with the effluent. Equipment and hands should be disinfected after sludge removal work.
General term for a liquid that leaves a technology, typically after blackwater or sludge has undergone solids separation or some other type of treatment. Effluent originates at either a collection and storage or a (semi-) centralised treatment technology. Depending on the type of treatment, the effluent may be completely sanitised or may require further treatment before it can be used or disposed of.Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:The capital costs of a Settler are medium and Operational costs are low. Costs depend on the conveyance and treatment technology it is to be combined with, and also on the local availability and thus costs of materials (sand, gravel, cement, steel) or prefabricated modules and labor costs. The main operation and maintenance costs are related to the removal of primary sludge and the cost of electricity if pumps are required for discharge (in absence of a gravity flow option).
Mixture of solids and liquids, containing mostly excreta and water, in combination with sand, grit, metals, trash and/or various chemical compounds. A distinction can be made between faecal sludge and wastewater sludge. Faecal sludge comes from on-site sanitation technologies, i.e. it has not been transported through a sewer. It can be raw or partially digested, a slurry or semisolid, and results from the collection and storage/treatment of excreta or blackwater, with or without greywater. Wastewater sludge (also referred to as sewage sludge) originates from sewer-based wastewater collection and (semi-)centralised treatment processes. The sludge composition will determine the type of treatment that is required and the end-use possibilities.Describes technologies for on-site collection, storage, and sometimes (pre-) treatment of the products generated at the user interface. The treatment provided by these technologies is often a function of storage and is usually passive (i.e. requires no energy input), except a few emerging technologies where additives are needed. Thus, products that are ‘treated’ by these technologies often require subsequent treatment before use and/or disposal. In the technology overview graphic, this functional group is subdivided into the two subgroups: “Collection/Storage” and “(Pre-)Treatment”. This allows a further classification for each of the listed technologies with regard to their function: collection and storage, (pre-) treatment only or both.Describes the transport of products from one functional group to another. Although products may need to be transferred in various ways between functional groups, the longest, and most important gap is usually between the user interface or collection and storage/treatment and (semi-) centralised treatment. Therefore, for simplicity, conveyance only describes the technologies used to transport products between these two functional groups. In the technology overview graphic, the conveyance functional group is subdivided into the two subgroups: “Emptying and Transport” and “Intermediate Storage”. This allows for a more detailed classification of each of the listed conveyance technologies.Refers to the methods through which products are returned to the environment, either as useful resources or reduced-risk materials. Some products can also be cycled back into a system (e.g. by using treated greywater for flushing).A functional group is a grouping of technologies that have similar functions. The compendium proposes five different functional groups from which technologies can be chosen to build a sanitation system:Usually, Settlers are a well-accepted technology. The wearing of adequate personal protective equipment should be addressed and trainings for involved staff might be needed.
Input Products
Output Products
Emergency Phase
Stabilisation | + |
Recovery | + + |
Challenging Ground Conditions
Semi-Suitable |
Application Level / Scale
Neighbourhood | + + |
City | + + |
Water-based and Dry Technologies
Water-Based |
Management Level
Shared | + |
Public | + + |
Technical Complexity
Medium |
Space Required
Medium |
Systematic overview of different sanitation systems and technologies
Manual on primary, secondary and tertiary treatment including general principles and practices
Close